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Abstract. The wavefunctions corresponding to the zero-energy eigenvalue of a one-dimensional
quantum chain Hamiltonian can be written in a simple way using quadratic algebras. Hamiltonians
describing stochastic processes have stationary states given by such wavefunctions and various
quadratic algebras have been found and applied to several diffusion processes. We show that similar
methods can also be applied for equilibrium processes. As an example, for a class of q-deformed
O(N) symmetric antiferromagnetic quantum chains, we give the zero-energy wavefunctions for
periodic boundary conditions corresponding to momenta zero and π . We also consider free
and various non-diagonal boundary conditions and give the corresponding wavefunctions. All
correlation lengths are derived.

1. Introduction

Quadratic algebras and their representations have been extensively used recently in order to
study the probability distributions of steady states of one-dimensional stochastic processes
with open boundaries or on a ring [1,2]. The basic idea is that if the Hamiltonian of a quantum
chain, which gives the time evolution of the system, has eigenvalue zero, the ket wavefunctions
which are related to the steady state probability distributions have a simple expression in terms
of a certain quadratic algebra determined by the bulk rates. This algebra has representations
fixed by the boundary conditions; the corresponding matrices act in an auxiliary vector space.
All correlation functions can be computed from these ket wavefunctions. The aim of this paper
is to ‘import’ these techniques to equilibrium statistical physics and stress the limitations and
differences. For stochastic processes the lowest eigenvalue of the Hamiltonian which gives the
time evolution of the system is zero. This is not the case for most of the Hamiltonians which
are interesting in equilibrium problems. Therefore the possible applications of the algebraic
approach to ground states is bound to be more limited. Another difference is that, in equilibrium
and periodic boundary conditions, the ground state can have non-zero momentum (is not
translationally invariant). This cannot be the case for stochastic processes since the components
of the ground-state ket vector have to be positive numbers (they are probabilities). Another
difference appears when we want to calculate correlation functions which are expressed in
terms of vacuum expectation values (implying the bra and ket vacua). As we shall see the
expressions of the correlation functions are very similar in the two cases. Actually the quadratic
algebra approach has implicitly already been used in equilibrium problems, where it is known
as the matrix product approach [3–6]. The matrices used are in fact representations of certain
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7470 F C Alcaraz and V Rittenberg

algebras. We hope to convince the reader that the algebraic approach is not only more aesthetic
but more powerful, since it makes contact with known results obtained in mathematics. Finally,
we would like to mention that matrix product approach has been used as an alternative to the
density matrix renormalization group method [7,8]. How the methods presented in this paper
can be applied to this problem is an open question. The application of quadratic algebras to
zero-energy states is presented in section 2. Much of the content of this section is already
known. What is new is how to handle zone boundary states which have momentum π . In
section 3 we give an application. The idea is simple: in the study of quantum groups, in order
to find the non-commutative manifold in which they act, Reshetikhin et al [9] have introduced
projector operators out of which one can build quantum chains having the quantum algebra as
symmetry. Moreover, one obtains for free a quadratic algebra (the manifold of the quantum
group) which can be used to write the zero-energy eigenfunctions of quantum chains built using
the projector operators. These chains are not exactly integrable since there is no associated
R matrix satisfying the Yang–Baxter equation [10]. We have considered, as an example, the
O(N) case for which we obtain an N -state Hamiltonian. The quadratic algebra turns out to be
the q-deformed Clifford algebra. In the special case N = 3 and q = 1 one recovers the model
with valence bond ground state (VBS) of Affleck et al [3]. (The q-deformed case can be found
in [6, 11].) The N = 4 case is discussed in appendix A: it is a special case of the extended
Hubbard model [12]. The Hamiltonians we consider can be mapped into quantum spin ladder
models [13] and find applications in this context. We are going to show that, for periodic
boundary conditions and an even number of sites, we find a unique zero-momentum ground
state. ForN even, we also find one zone boundary state. For free boundary conditions, we find
2N−1 ground states. This degeneracy can be lifted by adding boundary fields. In section 4 we
show how to choose the boundary conditions in order to obtain a unique vacuum. The boundary
terms break the symmetry of the quantum chain. The calculation of all the correlation lengths
(for any N ) is presented in section 5. It is shown that for large N the correlation lengths
diverge. In appendix B we show how to compute the correlation function for some parity
violating operators, appearing in the case where N is even. This problem is interesting in the
case of periodic boundary conditions when the ground state is twice degenerate even for a
finite number of sites. The conclusions can be found in section 6.

2. Zero-energy states and quadratic algebras

The application of quadratic algebras to the zero-energy ket wavefunctions for diffusion–
reaction processes is well known [1, 2, 14], in this section we shall make a trivial extension to
equilibrium processes and show how to compute correlation functions. We consider a most
general one-dimensional quantum chain withN states,L sites and nearest-neighbour two-body
interactions. The Hamiltonian is

H =
L−1∑
k=1

Hk + L + R. (1)

The bulk terms (k = 1, . . . , L − 1) and the left and right boundary terms are

Hk =
N∑

α,β,γ,δ=1

�
αβ

γ δE
γα

k E
δβ

k+1 (2)

L =
N∑

α,β=1

Lα
βE

βα

1 R =
N∑

α,β=1

Rα
βE

βα

L . (3)
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Here Eαβ

k are a basis for N × N matrices on the kth site:

(Eαβ)γ δ = δαγ δβδ (α, β, γ, δ = 1, . . . , N). (4)

We shall assume that H has at least one eigenstate of energy zero

H |0〉 = 0 〈0|H = 0. (5)

Our aim is to describe the bra 〈0| and ket |0〉 states in a simple way. In order to do that,
we consider two associative algebras defined by the bulk interaction:

N∑
α,β=1

�
αβ

γ δ xαxβ = xγXδ − Xγ xδ (6)

N∑
γ,δ=1

�
αβ

γ δ yγ yδ = yαYβ − Yαyβ. (7)

If the bulk part of the Hamiltonian is not symmetric, the two algebras are different. Each
algebra has 2N generators xα,Xα and yα , Yα , (α = 1, . . . , N), respectively. We define two
Fock-like representations of the two algebras:

〈VK |
(
Xα −

N∑
β=1

Lβ
αxβ

)
= 0

(
Xα +

N∑
β=1

Rβ
αxβ

)
|WK〉 = 0 (8)

〈VB |
(
Yβ −

N∑
α=1

Lβ
αyα

)
= 0

(
Yβ +

N∑
α=1

Rβ
αyα

)
|WB〉 = 0. (9)

Here 〈VK |, |WK〉, 〈VB | and |WB〉 are the bra and ket reference states defined by the equations (8)
and (9) in auxiliary spaces. We make now the connexion between the two algebras and the
zero-energy eigenstates of the Hamiltonian. The basis in the ket vector space in which the
Hamiltonian acts is

uα1uα2 , . . . , uαL (αk = 1, 2, . . . , N) (10)

the N -dimensional vector uαk is in the kth site and has the component αk equal to one and the
others zero:

(uαk )β = δαk,β (β = 1, 2, . . . , N). (11)

We denote the basis in the bra vector space in which the Hamiltonian acts by

uT
α1
uT
α2
, . . . , uT

αL
. (12)

The scalar product is obviously

〈uT
αk
uβk 〉 = δαk,βk . (13)

One can prove [15] that the unnormalized bra and ket vacua can be written using the two
quadratic algebras:

|0〉 =
N∑

α1,...,αL=1

〈VK |xα1 , . . . , xαL |WK〉uα1 , . . . , uαL (14)

〈0| =
N∑

α1,...,αL=1

〈VB |yα1 , . . . , yαL |WB〉uT
α1
, . . . , uT

αL
. (15)

Notice that the generatorsXα andYα do not appear in the expressions of the wavefunctions. One
can also show that the quadratic algebras exist, and that one can find representations satisfying
the conditions (8) and (9). Moreover, one can show that all the zero-energy wavefunctions can
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be obtained in this way [15]. In the case of periodic boundary conditions, and translationally
invariant zero-energy eigenfunctions, one can use the expressions (14) and (15), making the
substitution

〈VK | · · · |WK〉 → Tr(· · ·) 〈VB | · · · |WB〉 → Tr(· · ·) (16)

provided that the algebra has a trace operation.
As opposed to the case of the Hamiltonian with open boundaries, for periodic boundary

conditions, it is not clear in which cases one obtains in this way all the zero-energy
eigenfunctions. A simple counter-example was given in [16], in which it is shown that there
are zero-energy eigenfunctions which cannot be obtained using the algebraic method given by
equation (16). On the other hand, examples are known [17] where indeed all the eigenfunctions
are obtained.

Ground-state wavefunctions can correspond to zone boundary states (momentum π ). One
can show that if the algebra (6) has the Str operation with the properties

Str(xα1xα2 , . . . , xαL) = −Str(xαLxα1xα2 , . . . , xαL−1)

Str(Xα1xα2 , . . . , xαL) = −Str(xαLXα1xα2 , . . . , xαL−1)
(17)

then the ket vector

|0〉 =
L∑

α1,...,αL=1

Str(xα1 , . . . , xαL)uα1 , . . . , uαL (18)

satisfies equation (5) and is obviously a zone boundary state. Similar expressions can be used
for the algebra (7) and the bra eigenvector. The Str (called supertrace) operation is taken
from the theory of superalgebras and it implies that the xα and Xα are odd generators in this
algebra. In particular if in the algebra (6) one takes Xα c-numbers (this is often done for
diffusion processes [2]), the algebra cannot have the Str operation. In section 3 we shall show
in examples how the Str operation works. As for translationally invariant ground states it is
not known whether all of the zone boundary states can be obtained using equation (18).

Before showing how to compute correlation functions, let us see what are the consequences
for the quadratic algebras of the existence of a symmetry of the Hamiltonian. Let us assume
that the operator

A =
L∑

k=1

N∑
µ,ν=1

AµνE
µν

k (19)

commutes with the bulk part of the Hamiltonian, i.e.[
A,

L−1∑
k=1

Hk

]
= 0. (20)

Simple arithmetics gives the relations

N∑
α,β,µ=1

�
αβ

γ δ [(Aαµxµ)xβ + xα(Aβµxµ)]

=
N∑

µ=1

[(Aγµxµ)Xδ + xγ (AδµXµ) − (AγµXµ)xδ − Xγ (Aδµxµ)]. (21)

The above relations are obtained by using (6) and multiplying each two-body term arising
from (20) by

∑N
l,m,n,o=1 E

l,n
k E

m,o
k+1xlxm. The relation (21) gives a set of simplified algebraic

relations among the generators of the algebra and, at the same time, shows that the generators
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are tensor operators. (A relation similar to (21) can be obtained for the generators yα and
Yα .) As an example, let us choose A11 = 1 and all the other matrix elements zero in (19).
Using (21) one obtains

N∑
α=1

(�1α
γ δx1xα + �α1

γ δxαx1) = δγ,1(x1Xδ − X1xδ) + δδ1(xγX1 − Xγ x1). (22)

Similar relations can be obtained in the case of quantum algebra symmetries when the operator
A does not have the simple expression (19). We now show how to compute a two-point
function. This calculation is interesting when the ground-state energy is zero. Consider two
local operators Pr and Qs on the r and s sites. They act on the basis (10) as follows:

Pruαr =
N∑

βr=1

Pβr ,αr uβr Qsuαs =
N∑

βs=1

Qβs,αs uβs . (23)

We want to compute the expression

Gr,s = 〈0|PrQs |0〉
Z

(24)

where 〈0| and |0〉 are given by equations (14) and (15) andZ is a normalization factor originating
from the fact that (14) and (15) give unnormalized wavefunctions. It is useful to define the
following quantities (all related to the auxiliary space):

C =
N∑
α=1

xα ⊗ yα (25)

P =
N∑

α,β=1

Pαβxβ ⊗ yα Q =
N∑

α,β=1

Qα,βxβ ⊗ yα (26)

and

〈VB | ⊗ 〈VK | = 〈V | |W 〉 = |WK〉 ⊗ |WB〉. (27)

Using equations (25)–(27), the two-point function (22) has the following simple expression:

Gr,s = 1

Z
〈V |Cr−1PCs−r−1QCL−s |W 〉 (28)

where

Z = 〈V |CL|W 〉. (29)

Notice that C plays the role of a space evolution operator in the auxiliary space but the analogy
with a quantum mechanical problem cannot be pushed further since 〈V | and |W 〉 are not
eigenfunctions of C. Nevertheless one can see that the spectrum of C gives all the correlation
lengths. For periodic boundary conditions, we have to make the following substitution:

〈V | · · · |W 〉 → Tr(· · ·)
〈V | · · · |W 〉 → Str(· · ·) (30)

for translationally invariant states, or for zone boundary states, in equations (28) and (29).
Let us observe that the expressions (25)–(29) are similar to the ones obtained for stochastic
processes [1, 2]. The difference is that instead of dealing with only one algebra (given by
equation (6)), one has the tensor product of two algebras. If the algebra (7) has a one-
dimensional representation (this is always the case for diffusion processes with exclusion
for example [1]), the correlation functions computed using the ket vector only or the bra and
ket vector (vacuum expectation values) coincide. Expressions such as (25)–(29) have been
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used in a different context in the matrix product approach to the density matrix renormalization
group method [7]. In this case the xα are matrices obtained using the variational method and
not using quadratic algebras defined by the Hamiltonian using equation (6). Besides they have
to satisfy the condition

N∑
α=1

xαx
+
α = 1. (31)

As we shall see in the next section, this condition is not necessarily fulfilled in our applications.

3. q-deformed O(N ) symmetric, N -state quantum chains

The quantum chains describing stochastic processes are given by non-Hermitian Hamiltonians,
which always have zero as lowest eigenvalue. The quadratic algebra always exists [15] and
the problem is to find representations of the algebra. In equilibrium problems one is interested
in Hermitian Hamiltonians, which in general do not have zero as the lowest eigenvalue and
therefore one has to find Hamiltonians which have this property. In order to illustrate the
method, in this paper we have chosen an easy way: using known results in the theory of
quantum groups. In this way we obtain not only Hermitian quantum chains which have zero
for the ground-state energy but also quadratic algebras with known representations.

3.1. The bulk Hamiltonian

Reading the paper of Reshetikhin et al [9] one can notice that there are several expressions
of the form (6) with the Xαs equal to zero. We shall choose the one where �αβ

γ δ are projector
operators of rankN(N +1)/2−1 for the q-deformedB(n) series (N = 2n+1) andD(n) series
(N = 2n) [19]. The xα are the generators of the non-commutative algebra of the manifold
where the quantum groups act. Similar expressions for the Sp(n) and Osp(m/n) algebras and
superalgebras can also be obtained [18]. In this paper, we confine ourselves to the q-deformed
O(N) case. As we shall show we shall use these projectors in order to write Hamiltonians for
quantum chains. The projector operators have the following expressions:

P
(+)
k =

N∑
α,β,γ,δ=1

�
αβ

γ δE
γα

k E
δβ

k+1 = 1

q + q−1

[
q

∑
α 
=α′

Eαα
k Eαα

k+1 + (q − q−1)
∑
α>β

E
ββ

k Eαα
k+1

+δN,2n+1E
N+1

2
N+1

2
k E

N+1
2

N+1
2

k+1 + q−1
N∑

α,β=1

Eαα
k E

ββ

k+1 +
∑

α 
=β,β ′
E

βα

k E
αβ

k+1

+q−1
∑
α 
=α′

Eαα′
k Eα′α

k+1 − q− N
2

[N2 ]q

N∑
α,β=1

E
α′β
k E

αβ ′
k+1q

ρα−ρβ

−(q − q−1)
∑
α>β

E
α′β
k E

αβ ′
k+1q

ρα−ρβ

]
(32)

where q is a deformation parameter (taken as real in this paper) and we use the notation

[n]q = qn − q−n

q − q−1
and α′ = N + 1 − α (α = 1, . . . , N). (33)

In equation (32) we also denote

(ρ1, . . . , ρN) = (n − 1
2 , n − 3

2 , . . . ,
1
2 , 0,− 1

2 , . . . ,−n + 1
2 ) (34)
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for N = 2n + 1, and

(ρ1, . . . , ρN) = (n − 1, n − 2, . . . , 1, 0, 0,−1, . . . ,−n + 1) (35)

for = 2n. By definition we have

(P
(+)
k )2 = P

(+)
k . (36)

Since the matrix �
αβ

γ δ in (32) is symmetric, i.e. �αβ

γ δ = �
γδ

αβ , the two algebras associated with
the projector (32)

N∑
α,β=1

�
αβ

γ δ xαxβ = 0 and
N∑

α,β=1

�
αβ

γ δ yαyβ = 0 (37)

are identical and therefore we give only one of them. It is convenient to denote (for obvious
reasons) for N = 2n

x1 = an x2 = an−1, . . . xn = a1

xn+1 = a+
1 xn+2 = a+

2 , . . . x2n = a+
n

(38)

and for N = 2n + 1

x1 = an x2 = an−1, . . . xn = a1 xn+1 = 1√
s + s−1

1

xn+2 = a+
1 , . . . x2n+1 = a+

n

(39)

where s = √
q. Inserting (38) and (39) in (37) we obtain the following relations for the 2n

q-deformed fermionic creation and annihilation operators aα, a+
α and the ‘γ 5’-type generator

1:
qaβaα + aαaβ = 0 (β > α)

qaβa
+
α + a+

αaβ = 0 (β > α)

1aα + qaα1 = 0 1+ = 1

aαa
+
α + a+

αaα = qaα+1a
+
α+1 + q−1a+

α+1aα+1 (1 � α � n − 1)
qa1a

+
1 + q−1a+

1a1 = 12.

(40)

Using equation (40), one can check that the xαs defined by equations (38) and (39) verify the
relations (37) in which we have used the equation (32) for the definition of �αβ

γ δ [9].
The algebra (40) has a central element:

ζ = ana
+
n + a+

nan (41)

and an obvious representation is

ak = 1 ⊗ 1 ⊗ · · · ⊗ a ⊗ sσ
z

σ z ⊗ sσ
z

σ z ⊗ · · · ⊗ sσ
z

σ z (k = 1, . . . , n)
1 = sσ

z

σ z ⊗ sσ
s

σ z ⊗ · · · ⊗ sσ
z

σ z (42)

with

a =
(

0 1
0 0

)
a+ =

(
0 0
1 0

)
σ z =

(
1 0
0 −1

)
. (43)

In the first line of (42) the operator a is in the kth position, and the operator sσ
z

σ z appears
in the positions k + 1, . . . , n. The fact that the algebra has finite-dimensional representations
makes all calculations much simpler (see sections 5 and 6) as compared with the cases when
the algebra has infinite-dimensional representations. Notice also that for q 
= 1 the generators
xα do not satisfy the relation (31). We make now the connexion between the projectors (32)
and the quantum chain (1). Since the lowest eigenvalue E of a projector operator is zero, we
can choose in (1)

Hk = P
(+)
k . (44)
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Notice that Hk is Hermitian and therefore since as mentioned its lowest eigenvalue is zero, H
for periodic or free boundary conditions has also zero as its lowest eigenvalue. The problem
of other boundary conditions will be discussed in section 4.

3.2. Ground states for periodic and free boundary conditions

We start with periodic boundary conditions. We first consider zero-momentum states. Using
equation (14) (together with the substitution given by (16) as well as the representation (42)
we obtain, for all N , one single ket vector of energy zero for L even and none for L odd.
This result is confirmed by the spectra obtained from the numerical diagonalization of several
Hamiltonians (various L and N ). This check was necessary since as mentioned in section 2
there is no theorem which assures us that there are no zero-energy eigenfunctions which are not
obtained using the algebraic procedure. We now look for zone boundary states and therefore
look for a definition of the Str operation such that the relations (17) and (18) are satisfied. We
consider the matrix J defined by

J = σ z ⊗ σ z ⊗ · · · ⊗ σ z. (45)

A vector

|v〉 = |v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vn〉 (46)

is called even (odd) if it is an eigenvector of J corresponding to the eigenvalue +1 (−1). A
matrix is called even if it takes an even (odd) vector into an even (odd) vector. A matrix is
called odd if it takes an even (odd) vector into an odd (even) vector. For example, the matrices
ak in equation (42) are odd but the matrix 1 is even. Consider now the matrix

A = A1 ⊗ A2 ⊗ · · · ⊗ An. (47)

We define

Str(M) = Tr(JM). (48)

It is easy to check that if A and B are odd matrices, then

Str(AB) = −Str(BA). (49)

If one of the two matrices is even and the other one is odd

Str(AB) = 0. (50)

If the two matrices A and B are even

Str(AB) = Str(BA). (51)

From this properties we learn that in order to satisfy the relations (17) (the relations in the
second line of (18) are automatically satisfied since Xα = 0), the xαs have to be all odd
generators. This excludes the case of N = 2n + 1 because of the appearance of the sigma
generator, which is even. For L odd and N = 2n all the supertraces are zero and again we
cannot obtain a boundary state which is physically correct. For N and L even we expect
therefore a unique zone boundary state. This is what is also seen in numerical diagonalizations
for allL except for q = 1 and small values ofLwhere something subtle happens. We illustrate
the phenomenon taking N = 4. Using equations (42), (45) and (48) we obtain

Str(a+
2a2) = 0 Str(a+

1a1) = q − q−1 (52)

which would imply that for q = 1 and L = 2 there are no zone boundary states. Actually
there are two of them; they can be obtained by taking, instead of J given by equation (45), two
alternative expressions:

1 ⊗ σ z or σ z ⊗ 1. (53)
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These expressions cannot be used however for monomials with more than two generators (the
property (17) is no longer valid). In the spectra for periodic boundary conditions as seen in
numerical diagonalizations, there are no zero-energy states besides those mentioned above.
The existence forN even of a degenerate ground state, one of positive parity (momentum zero,
obtained with the help of the Tr operation) that we denote by |0,+〉 and one of negative parity
(momentum π , obtained with the help of the Str operation) that we denote by |0,−〉, allows for
the existence of correlation functions of operators which break parity. For example one of the
operatorsP orQ in equation (25) can break parity. In appendix B we show how to compute the
correlation functions for this case (one considers matrix elements 〈0,−| · · · |0,+〉 for example).
A somewhat similar problem occurs in spontaneously dimerized spin ladders [20]. We would
like to stress that in our case the degeneracy of the vacuum occurs even for a finite number of
sites.

We now consider free boundary conditions. An inspection of equation (8) shows that it
brings no constraints, therefore instead of equation (14) we have

|0〉 =
N∑

α1,...,αL=1

xα1 , . . . , xαLuα1 , . . . , uαL (54)

where the various independent monomials (words) in the algebra are regarded as a basis in a
vector space. Each component of |0〉 in this basis gives a zero-energy eigenfunction. Therefore
for both L even and odd we obtain 2N−1 states. This result was obtained by counting the
independent words. For small values of L, the degeneracy can be smaller since higher-degree
monomials might not yet have appeared. For example for N = 4 and L = 2 the degeneracy
is seven instead of eight but for L = 3 one obtains already eight.

4. Boundary conditions compatible with the quadratic algebras

The boundary matrices L and R (we shall choose them as Hermitian) have not only to be
compatible with the quadratic algebra (see below), but have also to leave the value zero as the
lowest eigenvalue. This property is guaranteed if the lowest eigenvalues EL and ER are also
zero. This follows from the relation

EH � EL + (L − 1)E + ER (55)

where EH and E are the lowest eigenvalues of H and Hk .
Since, for the q-deformed O(N) symmetric quantum chains defined in the last section, the

algebras (6) and (7) with Xα and Yβ equal to zero are identical, we have to find the matrices L
and R as well as the vacua of the auxiliary spaces such that the following relations (obtained
from equations (8), (9)) are satisfied:

N∑
β=1

Rβ
αxβ |WK〉 = 0

N∑
α=1

Rβ
αxα|WB〉 = 0 (56)

N∑
β=1

Lα
β〈VK |xβ = 0

N∑
α=1

Lα
β〈VB |xα = 0. (57)

We have taken the same representation for the two sets of Clifford generators xα and yα . We
now show that the solutions of equations (57) can be obtained from those of (56). We take the
transpose of the two equations (57):

N∑
β=1

Lα
βx

T
β |V T

K 〉 = 0
N∑
α=1

Lα
βx

T
α |V T

B 〉 = 0 (58)
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and since, from equations (38), (39), we have xT
α = xα′ = xN+1−α , we can rewrite the

equations (58) as follows:

N∑
β=1

Lα
β ′xβ |V T

K 〉 = 0
N∑
α=1

Lα′
β xα|V T

B 〉 = 0. (59)

We can compare now the equations (56) and (59) and deduce that for any solution Rβ
α of (56)

(there are many of them) one obtains a solution for Lβ
α :

Lα
β = Rα′

β ′ . (60)

One can use of course one solution of equations (56) for Rβ
α and another solution to obtain Lβ

α

using equation (60). We are looking for solutions of a factorized form:

Rα
β = reαfβ (61)

where r, eα and fβ are functions which depend on the specific value of N . It is convenient to
choose the following basis in the auxiliary vector spaces in which xα and yα (replaced formally
by xα) act (see equations (42), (43) and (56)):

|WK〉 =
( L∏

i=1

1√
1 + η2

i

) (
η1

1

)
⊗

(
η2

1

)
⊗ · · · ⊗

(
ηn
1

)
(62)

|WB〉 =
( L∏

i=1

1√
1 + η̃2

i

) (
η̃1

1

)
⊗

(
η̃2

1

)
⊗ · · · ⊗

(
η̃n
1

)
. (63)

We are going to consider separately the cases N = 2, 3, . . . , 6 in order to illustrate the
structure of the solutions. As we shall show for N = 2, the values of η1 and η̃1 are fixed and,
besides a common factor, the matrix elements of R contain no parameters. For N = 3 and 4,
the parameters η1, η2 and η̃1, η̃2 respectively are free and R is given by the parameters of the
wavefunctions (62), (63) and a common factor. For N = 5 and 6, a new phenomenon appears.
The wavefunction (62) is given by the free parameters η1, η2, η3, and the wavefunction (63)
is specified by the corresponding parameters η̃1, η̃2, η̃3. R depends now not only on the
parameters of the wavefunctions but on supplementary free parameters. This implies that
different boundary conditions are compatible with the same wavefunctions (14), (15). We
now consider the boundary conditions for some values of N .

N = 2. Since this is a very simple (and trivial) case, we discuss it in detail. From
equations (32) and (44) we obtain

Hk = 1
2 (σ

z
k σ

z
k+1 + 1). (64)

This implies that for free boundary conditions the ground state is twice degenerate, with
antiferromagnetic ordering. This degeneracy is a consequence of the existence of two
independent words in the O(2) algebra: x1x2, . . . , x1x2 and x2x1, . . . , x2x1. Demanding that
R is diagonalizable, equations (56) have two solutions:

R = rA |WK〉 =
(

1
0

)
|WB〉 =

(
1
0

)
(65)

and

R = rB |WK〉 =
(

0
1

)
|WB〉 =

(
0
1

)
(66)
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where

A =
(

1 0
0 0

)
B =

(
0 0
0 1

)
(67)

and r > 0.
We consider separately the two cases.
(a) R = rA, L = lA with r, l > 0. For lattice size L even, we obtain no zero-energy

eigenstate. The matrix elements (14), (15) vanish. ForL odd, one obtains a unique zero-energy
ground state.

(b) R = rA,L = lB For L even, one obtains an unique zero-energy ground state and
none for L odd.

N = 3. The solutions are

f1 = sη1 f2 = −
√
s + s−1 f3 = −(sη1)

−1

e1 = sη̃1 e2 = −
√
s + s−1 e3 = (sη̃1)

−1
(68)

and the eigenvalues of R are zero twice and

r

[
1 +

1

s + s−1
(s2η1η̃1 + (s2η1η̃1)

−1)

]
: (69)

this relation imposes r > 0. Since we want R symmetric, we take (see equation (61)) η1 = η̃1

and therefore

eα = fα(α = 1, 2, . . . , N). (70)

N = 4. One obtains

f1 = sη2 f2 = −η1 f3 = −η−1
1 f4 = −(sη2)

−1. (71)

The matrix R has three eigenvalues zero and one equal to

r[(sη2)
2 + η2

1 + η−2
1 + (sη2)

−2]. (72)

Notice that for N = 3 and 4, the parameters of the vacua and r determine the R matrix. This
is bound to change for larger values of N .

N = 5. The solution is

f1 = η2s

(
1 + a

s − s−1

s + s−1

)
f2 = −η1(1 − a) f3 = − 2a√

s + s−1

f4 = −η−1
1 (a + 1) f5 = −η−1

2 s−1

(
1 + a

s − s−1

s + s−1

) (73)

where a is an additional free parameter. R has now four eigenvalues zero and one equal to
r
∑5

i=1 f
2
i .

N = 6. One obtains

f1 = η3s

(
a +

s − s−1

2

)
f2 = −η2

(
a − s + s−1

2

)
f3 = −η1

f4 = −η−1
1 f5 = −η−1

2

(
a +

s + s−1

2

)
f6 = −s−1η−1

3

(
a +

s − s−1

2

) (74)

with a arbitrary. R has now five eigenvalues zero and one equal to r
∑6

i=1 f
2
i .
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Notice that for N = 5 and 6 the f s depend not only on η1, η2 and η3 but also on the
supplementary parameter a. This implies that the same wavefunction can be used for different
boundary matrices. We also notice that taking r positive ensures that the lowest eigenvalue
remains zero. One can obtain R matrices with only non-vanishing elements on the diagonal
(as in equation (67)), taking one of the ηi equal to zero or infinity. This remains valid for any
N . For larger values of N the number of free parameters increases and it is certainly not our
purpose to give here the general solution. We would like to stress that for N > 2 the boundary
conditions can break all the symmetries of the Hamiltonian.

5. Diagonalization of the C matrix and calculation of the correlation lengths of the
q-deformed O(N ) quantum chain

It is necessary to have a new look at the expression (28) of the two-point correlation function. In
the last section we have shown how to obtain the bra and ket vacua (〈V | and |W 〉, respectively)
in the auxiliary spaces. In order to proceed further, one has to find the similarity transformation
S which diagonalizes the matrix C:

C = SCDS
−1. (75)

The matrix C is given by equation (25). In this equation the xα and yα are the generators of the
two identical algebras (see (38)–(40)) having the representation (42), (43). We shall consider
separately the cases where N is even or odd.

(a) N = 2n

It is convenient to write C as a four-state Hamiltonian with n sites in the auxiliary space:

C(N) = E1F2F3, . . . , Fn + E2F3F4, . . . , Fn + · · · + En (76)

where the matrices Ei and Fi act on the ith site and have the expression

(1,1) (1,2) (2,1) (2,2)

E = a ⊗ a =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 (77)

(1,1) (1,2) (2,1) (2,2)

F = sσ
z

σ z ⊗ sσ
z

σ z =




q 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 q−1


 (78)

where

a =
(

0 1
0 0

)
σ z =

(
1 0
0 −1

)
. (79)

The basis vectors in the tensor products (77), (78) correspond to the two-dimensional
representations used in (42), (43). In this basis the vacuum |W 〉 in the auxiliary space has
the expression

|W 〉 = V (1) ⊗ V (2) ⊗ · · · ⊗ V (n) (80)
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where

V = 1√
(1 + η2)(1 + η̃2)

(
η

1

)
⊗

(
η̃

1

)
. (81)

Notice the recurrence relation:

C(N+2) = C(N)Fn+1 + En+1 (82)

that we are going to use later on. If q = 1, the diagonalization of C is trivial since E and F

commute. Using the similarity transformation

U =
√

2

2




1 0 0 −1
0

√
2 0 0

0 0
√

2 0
1 0 0 1


 (83)

we have

ED = UEU−1 = 1
2 (σ

z ⊗ 1 + 1 ⊗ σ z) FD = U−1FU = σ z ⊗ σ z. (84)

It is convenient to write CD as a one-dimensional two-state spin chain with 2n sites:

C
(N)
D = 1

2 [(σ z
1 + σ z

2 )(σ
z
3σ

z
4 ) · · · (σ z

2n−1σ
z
2n)

+(σ z
3 + σ z

4 )(σ
z
5σ

z
6 ) · · · (σ z

2n−1σ
z
2n) + · · · + (σ z

2n−1 + σ z
2n)]. (85)

In order to simplify the expression (85), it is useful to look at C as a function defined on the
Abelian group Z2 ⊗ Z2 ⊗ · · · ⊗ Z2 = (Z2)

⊗2n. In order to do so, we write

σ z
k = (−1)εk (εk = 0, 1). (86)

Using this notation, instead of equation (85) we obtain

C
(N)
D = 1

2 [(−1)ε1 + (−1)ε2)((−1)ε3(−1)ε4) · · · ((−1)ε2n−1(−1)ε2n )

+((−1)ε3 + (−1)ε4)((−1)ε5(−1)ε6) · · · ((−1)ε2n−1(−1)ε2n )

+ · · · + ((−1)ε2n−1 + (−1)ε2n )]. (87)

We perform now the change of variables:

ω1 = ε1 + (ε3 + ε4) + · · · + (ε2n−1 + ε2n)

ω2 = ε2 + (ε3 + ε4) + · · · + (ε2n−1 + ε2n)

ω3 = ε3 + (ε5 + ε6) + · · · + (ε2n−1 + ε2n)

ω4 = ε4 + (ε5 + ε6) + · · · + (ε2n−1 + ε2n)

...

w2n−1 = ε2n−1

w2n = ε2n.

(88)

Notice the identity

(−1)
∑N

i=1 ωi = (−1)
∑N

i=1 εi (89)

that we are going to use shortly. With the change of variables (88), instead of the
expression (87), we obtain

C
(N)
D = 1

2

N∑
i=1

(−1)ωi = 1
2

N∑
i=1

τ zi = Sz(N). (90)
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From equation (90) it turns out that the spectrum of C(N) for N = 2n is the same as that of
the z-component of the total spin Sz for 2n spins 1

2 . Therefore the eigenvalues are n − m

(m = 0, 1, . . . , N) with a degeneracy given by the binomial coefficient CN−m
N .

We now consider the case q 
= 1. We are going to use the recurrence relation (76). We
first make a change of basis (see equations (77), (78)) in the four-state chain with n sites:

(1, 1) → 1 (2, 2) → 2 (1, 2) → 3 (2, 1) → 4 (91)

and denote by u
(k)
i , the basis vector on the kth site having the ith (i = 1, 2, 3, 4) component

equal to one and the others zero. In this basis E and F have the expressions

E =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 F =



q 0 0 0
0 q−1 0 0
0 0 −1 0
0 0 0 −1


 . (92)

In the same basis, for N = 2, one has

C(2) = E1 (93)

and the eigenvalues (eigenfunctions) are

1,

[
u
(1)
1 + u

(2)
2√

2

]
− 1,

[
u
(1)
1 − u

(2)
2√

2

]
0, [u(1)3 ] 0, [u(1)4 ]. (94)

Assume that B(N)
C written in the basis

u(1)α1
u(2)α2

, . . . , u(n)αn
(αi = 1, 2, 3, 4)

is an eigenfunction of C(N) corresponding to the eigenvalue C. We now consider the four
wavefunctions

B
(N)
C u

(n+1)
i (i = 1, 2, 3, 4) (95)

and act with C(N+2) on them using the relation (82). We obtain

C
(N+2)
C B

(N)
C u

(n+1)
1 = CqB

(N)
C u

(n+1)
1 + B

(N)
C u

(n+1)
2

C
(N+2)
C B

(N)
C u

(n+1)
2 = Cq−1B

(N)
C u

(n+1)
2 + B

(N)
C u

(n+1)
1

C
(N+2)
C B

(N)
C u

(n+1)
3 = −CB

(N)
C u

(n+1)
3

C
(N+2)
C B

(N)
C u

(n+1)
4 = −CB

(N)
C u

(n+1)
4 .

(96)

Two of the wavefunctions (95) for i = 3 and 4 are therefore eigenfunctions of C(N+2)

corresponding to the same eigenvalue −C. One obtains also the two other eigenvalues:

D± = 1
2

[
C(q + q−1) ±

√
C2(q − q−1)2 + 4

]
. (97)

Notice that if C = [m]q, then D± = [m ± 1]q , where we have used the notation (33). The
eigenfunctions corresponding to the eigenvalues D± are

B
(N)
C (u

(n+1)
1 + (D(±) − qC)u

(n+1)
2 ). (98)

Using the eigenvalues and eigenfunctions (94) forN = 2 and the recurrence relations (96)–(98)
one can obtain all the eigenvalues and eigenfunctions of C(N) for any even N . The eigenvalues
are

[n − m]q (m = 0, . . . , N) (99)

with a degeneracy

CN−m
N . (100)

Forq = 1 one recovers the spectrum given bySz(N) (see equation (90)). Notice that the similarity
transformations used here are even matrices (see section 3.2), therefore the supertrace operation
defined by equation (48) remains valid.
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(b) N = 2n + 1

We start again with q = 1 and from the definition of C(2n+1) we have

C(2n+1) = C(2n) + 1
2

2n∏
k=1

σ z
k . (101)

Using the equations (86) and (89), (90), we obtain the diagonal form of C(2n+1):

C
(2n+1)
D = Sz(2n) + 1

2 (−1)n+Sz(2n) (102)

which obviously has the spectrum

N

2
− 2m (m = 0, 1, 2, . . . , n) (103)

with a degeneracy

C2m
N . (104)

We now consider the case q 
= 1. Instead of (101) one has

C(2n+1) = C(2n) +
1

s + s−1
F1F2, . . . , Fn. (105)

The recurrence relation (82) remains valid as well as (96)–(98). As opposed to N = 2n, where
we use the recurrence relations starting with C(2), for N = 2n + 1 we start with C(3). In the
basis u(1)i (i = 1, 2, 3, 4), the matrix C(3) is

C(3) = 1

s + s−1




s2 (s + s−1) 0 0
(s + s−1) s−2 0 0

0 0 −1 0
0 0 0 −1


 (106)

having obviously the following eigenvalues (eigenfunctions):[
3

2

]
q

,

[
1√

1 + q
(
√
qu

(1)
1 + u

(1)
2 )

]
−

[
1

2

]
q

,

[
1√

1 + q
(u

(1)
1 − √

qu
(1)
2 )

]

−
[

1

2

]
q

, [u(1)3 ] −
[

1

2

]
q

[u(1)4 ]. (107)

The spectrum of C(2n+1) is therefore[
N

2
− 2m

]
q

(m = 0, 1, . . . , n) (108)

with a degeneracy

C2m
2n+1. (109)

From the spectra of the matrix C, which plays the role of a transfer matrix (see equation (28)),
one can derive the mass spectra (the inverse of the correlation lengths) using equations (99)
and (108). For N = 2n we have

Mm = ln
[N2 ]q

[N2 − m]q
(m = 1, . . . , n − 2) (110)

and for N = 2n + 1 we obtain

Mm = ln
[N2 ]q

[N2 − 2m]q
(m = 1, . . . , n). (111)
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Therefore the system is always massive. It is interesting to note that in the large-N limit, for
q = 1, one obtains (see equations (110), (111))

lim
N→∞

N

2
Mm = m (N = 2n)

lim
N→∞

N

2
Mm = 2m (N = 2n + 1).

(112)

This implies that in the limit N → ∞, all correlation lengths diverge. Looking at the
expressions (112) and keeping in mind that in conformal invariant theories one has similar
expressions with N substituted by L (N of O(N) replacing L, the size of the system, of the
conformal invariant quantum chain), we would expect some similarity between the two physics.
The analogy, however, is not so simple since the degeneracy of the level m also diverges (see
equations (100) and (109)). An explicit calculation of the correlation functions in the large-N
limit, which we did not perform, will clarify the issue.

It is interesting to notice that for O(3), spin S, (2S + 1)-state quantum chain VBS gives,
for the the smallest mass M1, the following large-S behaviour [4]:

lim
S→∞

S

2
M1 = 1. (113)

Comparing the equations (112) with (113) we learn that, in the asymptotic cases, the largest
correlation length is given essentially by the number of states of the chain.

6. Conclusions

We have considered q-deformed O(N) symmetric, N -state quantum chains defined by
Hamiltonians given by equations (1), (32) and (44). The symmetry is unbroken for free
boundary conditions. For q 
= 1 the quantum group symmetry is broken for periodic boundary
conditions. For q = 1, no symmetry might remain because of boundary terms which can be
chosen as described in section 4. Using algebraic methods, the ground-state wavefunctions
for these quantum chains are known exactly for periodic, free and non-diagonal boundary
conditions; they all correspond to energy zero. The wavefunctions are obtained using q-
deformed Clifford algebras. These generalize the construction of Affleck et al [3]. Using
the trace and supertrace operations in an auxiliary space, for N even and periodic boundary
conditions, one obtains two ground states, one for momentum zero and one for momentum π .
This implies that, even for a finite number of sites and periodic boundary conditions, the ground
state is degenerate. For N odd one obtains only translationally invariant ground states. For
free boundary conditions the degeneracy of the ground state is 2N−1. This degeneracy is lifted
by boundary terms. We have shown how to compute correlation functions and have derived all
the correlation lengths. They are finite and diverge only for q = 1 and L → ∞. What is the
physical relevance of our results? For N = 4 we have shown in appendix A how the chain can
be mapped into the extended Hubbard model [12]. For all values ofN one can map our quantum
chains for obvious reasons into various ladder models [13], writing the on-rung interaction as
a two-site interaction. Whether what one obtains is physically interesting remains to be seen.
On the other hand the wavefunctions we obtain can be used as trial ground states for more
realistic models [3]. Can the procedure described here be extended to other quantum chains?
The answer is yes. One can consider q-deformed Sp(N) symmetric chains. In this case
instead of the Clifford algebra one obtains [18] the q-deformed Heisenberg algebra as a tool to
compute the wavefunctions. One can go even one step further and take quantum chains with
the superalgebra Osp(M/N) as symmetry. In this case [18] the algebra one uses to construct
the wavefunctions is a combination of the Clifford and Heisenberg algebras. These extensions
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are straightforward. Again, it is an open question whether these extensions are interesting from
a physical point of view. Last but not least, very simple quadratic algebras were discussed
above; whether more interesting ones (withXα and Yα in equations (6) and (7) unequal to zero)
find use in equilibrium problems remains to be seen. They do in non-equilibrium problems.
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also DAAD-Germany. VR wants to thank Alexander Nersesyan and Michele Fabrizio
for discussions and also his colleagues at SISSA for hospitality under the TMR grant
ERBFMRXCT 960012.

Appendix A. Fermionic formulation of the O(4) quantum chain

In this appendix we shall present explicitly the Hamiltonian that corresponds to the N = 4
case. From (32) and (34) the Hamiltonian is

H =
∑
k

Hk (A.1)

Hk = P
(+)
k =

4∑
α,β,γ,δ=1

�
αβ

γ δE
γα

k E
δβ

k+1

= 1

q + q−1
{(q + q−1)[E11

k E11
k+1 + E22

k E22
k+1 + E33

k E33
k+1 + E44

k E44
k+1]

+q[E11
k E22

k+1 + E11
k E33

k+1 + E22
k E44

k+1 + E33
k E44

k+1]

+q−1[E33
k E11

k+1 + E44
k E33

k+1 + E44
k E22

k+1 + E22
k E11

k+1]

+[E21
k E12

k+1 + E12
k E21

k+1 + E31
k E13

k+1 + E13
k E31

k+1

+E42
k E24

k+1 + E24
k E42

k+1 + E43
k E34

k+1 + E34
k E43

k+1]

+α3[E22
k E33

k+1 + E33
k E22

k+1 + E14
k E41

k+1 + E23
k E32

k+1 + E32
k E23

k+1 + E41
k E14

k+1]

+α1E
11
k E44

k+1 + α5E
44
k E11

k+1 + α2[E31
k E24

k+1 + E21
k E34

k+1 + E12
k E43

k+1 + E13
k E42

k+1]

+α4[E42
k E13

k+1 + E43
k E12

k+1 + E34
k E21

k+1 + E24
k E31

k+1]} (A.2)

where

α1 = q3

1 + q2
α2 = − q2

1 + q2
α3 = q

1 + q2

α4 = − 1

1 + q2
α5 = q−1

1 + q2
.

(A.3)

It is also interesting to rewrite (A.2) in terms of spin- 1
2 creation and annihilation fermion

operators on the lattice. This is done by making the following correspondence between the
basis |α〉j , α = 1, 2, 3, 4, in (A.2), at each lattice point j , and the Fock representation:

|1〉j ↔ |0〉j = | · ·〉j |2〉j ↔ c+
j,+|0 >j= | ↑ ·〉j

|3〉j ↔ c+
j,−|0〉j = |· ↓〉j |4〉j ↔ c+

j,+c
+
j,−|0〉j = | ↑↓〉j . (A.4)

Using this fermionic basis the Hamiltonian density (A.2) is given by

Hk = 1

q + q−1

{ ∑
σ=+,−

(c+
k,σ ck+1,σ + h.c.)(1 + tσ1nk,−σ + tσ2nk+1,−σ + t ′σ nk,−σ nk+1,−σ )
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+J ( �Sk · �Sk+1 − nknk+1/4) + tp(c
+
k,+c

+
k,−ck+1,+ck+1,− + h.c.) + (q + q−1)

−qnk − q−1nk+1 + Ulnk,+nk,− + Urnk+1,+nk+1,− +
∑

σ,σ ′=+,−
Vσ,σ ′nk,σ nk+1,σ ′

+[V (1)
3 nk,+nk+1,−nk+1,+ + V

(2)
3 nk,−nk+1,−nk+1,+ + V

(3)
3 nk,−nk,+nk+1,+

+V (4)
3 nk,−nk,+nk+1,−] + V4nk,−nk,+nk+1,−nk+1,+

}
(A.5)

where

t−1 = t+1 = −q2 + 2

q2 + 1
t−2 = t+2 = −1 + 2q2

1 + q2
t ′− = t ′+ = 3

J = 2tp = 2q

1 + q2
Ul = q3

1 + q2
Ur = q−1

1 + q2

V++ = V−− = q + q−1 V+− = V−+ = 2q

1 + q2

V
(1)

3 = V
(2)

3 = −q−1 V
(3)

3 = V
(4)

3 = −q V4 = q + q−1.

(A.6)

In (A.5) appear the density operators nk,σ = c+
k,σ ck,σ and nk = nk,+ + nk,− at the site k. The

magnetic spin–spin interaction (coupling J ) in (A.5) is derived from the relation∑
σ 
=σ ′

c+
k,σ c

+
k+1,σ ′ck,σ ′ck+1,σ = 2( �Sk · �Sk+1 − nknk+1/4) + nk,+nk+1,− + nk,−nk+1,+ (A.7)

where �Sk = 1
2 �σk , and �σ = (σ x, σ y, σ z) are the spin- 1

2 Pauli matrices.
The Hamiltonian (A.5) belongs to the class of extended Hubbard models considered

in the recent literature [12]. Beyond the magnetic interaction (coupling J ) we also have
non-diagonal interactions that correspond to single-particle correlated hopping (couplings
tσ1, tσ2, t

′
σ ; σ = ±), as well as pair hopping terms (coupling tp). The static interactions are

given by the diagonal terms. The couplings Ul and Ur give us the on-site Coulomb interaction,
and the interactions Vσ,σ ′ (σ, σ ′ = ±), V (α)

3 , (α = 1, . . . , 4) and V4 give us the two- three- and
four-body static interactions, respectively.

We should notice that the Hamiltonian (A.5) conserves separately the total number of up
spins n+ and down spins n−. Consequently for free boundary conditions we may construct,
using the the algebraic method, zero-energy eigenfunctions Bn+,n− , for each sector labelled by
n+ and n− (n+, n− = 0, 1, . . . , L), i.e.

Bn+,n− = Pn+,n−

[ L∏
⊗k=1

(x1 + x2c
+
k,+ + x3c

+
k,− + x4c

+
k,+c

+
k,−)|0〉k

]
(A.8)

where Pn+,n− projects out states which do not have n+ spins σ = + and n− spins σ = − (see
equation (54)).

Appendix B. Correlation functions for parity violating operators (N even)

We would like to show how to compute the correlation functions

ξr,s = 〈0,−|PrQs |0,+〉
Z−,+

(B1)

where

Z−,+ = 〈0,−|0,+〉 (B2)
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which appear for N and L even and periodic boundary conditions when the vacuum is
degenerate. Here

|0,+〉 = Tr(xα1 , . . . , xαL)uα1 , . . . , uαL (B3)

corresponds to the parity +, momentum zero wavefunction,

〈0,−| = Str(yβ1 , . . . , yβL)u
T
β1
, . . . , uTβL = Tr(Jyβ1 , . . . , yβL)u

T
β1
, . . . , uTβL (B4)

corresponds to the parity −, momentum π wavefunction. The matrix J is defined in
equation (45). The action of the operators P and Q is shown equation (23). For obvious
reasons, one of the two operators P or Q has to break parity. It is easy to show, using the
definitions given by equations (23) and (25) that we have

〈0,−|PrQs |0,+〉 = Tr(DCr−2PCs−r−1QCL−s) (B5)

and

〈0,−|0,+〉 = Tr(DCL−1) (B6)

where

D =
N∑
α=1

xα ⊗ Jyα. (B7)

Obviously the correlation lengths appearing for this type of correlation function are the same
as for the parity conserving operators where one computes quantities such as 〈0,+|, . . . , |0,+〉
or 〈0,−|, . . . , |0,−〉.
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